Performansa Dayalı Lojistik
Sektör Değerlendirme Raporu
Kasım’16
İÇİNDEKİLER

ÖNSÖZ .. 4
GİRİŞ .. 6
1. PERFORMANSA DAYALI LOJİSTİK (PDL)........ 12
 1.1. GENEL .. 12
2. PDL TANıMLAMALARI 16
3. PDL GELİŞİMİ ...18
 A. AMERİKA BİRLEŞİK DEVLETLERİ ..19
 B. İNGİLTERE ...24
 C. TÜRKİYE ..25
 D. DİĞER ...27
4. PDL UYGULAMALARINA İLİŞKİN SONUÇLAR28
5. PERFORMANS PARAMETRELERİ ..32
 KAYNAKÇA ..36
ÖNSÖZ

Çözüm arayışları kapsamında farklı yaklaşım ve yöntemler denenmiş, sürdürülebilir ve maliyet etkin çözümün Performansa Dayalı Lojistik (PDL) yaklaşımı ile bulunabileceğini tespit edilmiştir.

Ülke ekonomilerinden savunma tedarikine ayrılan payda bir düşüş trendi gözlemlenmektedir. Bu durum, savunma sektöründe sürdürülebilir ve maliyet etkin çözümlerin geliştirilmesini zorunlu kılmıştır. Çözüm arayışları, silah sistemlerinin ömür devri maliyetinin yaklaşık %70’lik bölümüne gerçekleştirtiği işletme-idame safhasına odaklanmıştır.

Çözüm arayışları kapsamında farklı yaklaşım ve yöntemler denenmiş, sürdürülebilir ve maliyet etkin çözümün Performansa Dayalı Lojistik (PDL) yaklaşımı ile bulunabileceğini tespit edilmiştir. ABD başta olmak üzere özellikle gelişmiş ülkelerde etkinlikle uygulanan PDL yaklaşımı yaygınlaşma sürecine girmiştir.

PDL; “yeni bir karmaşık savunma sistemi için malzeme çözümü aşamasından, enverterdeki bir sistem için ise işletme-idame aşamasından başlamak üzere ömür devrinin tüm safhalarını kapsayan, uzun vadeli bir destek stratejisi doğrultusunda, belirlenen performans hedeflerinin elde edilebilmesi maksadiyla kamu-özel sektör imkân ve kabilyetlerinin, tüm paydaşların kendi öz yeteneklerine odaklanmasını sağlayacak şekilde bir araya getirilerek tasarlanan ve uygun bir teşvik mekanizması ile hayata geçirilen bütünleşme lojistik stratejisi” şeklinde tanımlanabilir.
Bu raporda ABD, İngiltere ve Türkiye’de PDL alanında yaşanmış olan evrimleşme süreçleri detaylı olarak anlatılmıştır. Ayrıca PDL’nin uygulandığı program ve projelerden elde edilen sonuçlara yer verilmiştir. PDL uygulanan programlar üzerinde kamu, özel sektör ve akademik çevreler tarafından yapılan araştırmalarda; PDL yaklaşımı sayesinde sistemlerin göreve hazırlanış seviyelerinde ortalamı %20 – 40 oranında iyileşme, toplam ömür maliyetlerinde ortalamı %15 – 20 oranında bir düşüş, sistemlerin faal olarak çalışma sürelerinde ortalamı %40’lık bir artış, lojistik gecikme zamanlarında ise yaklaşık %70 oranında bir iyileşme meydana geldiği tespit edilmiştir. Raporun son kısmında ise ABD, İngiltere ve Türkiye PDL uygulamalarında kullanılmakta olan performans parametrelerine değinilmiştir.

Karmaşık sistemlerin kullanıldığı başta savunma olmak üzere güvence, enerji, ulaştırma ve sağlık sektörlerinde PDL yaklaşımı ile tedarik ve işletme - idame süreçlerinin modelebileceği değerlendirilmiştir.

Raporda yer alan bilgi ve değerlendirme lerin, kamuyu ve konuya ilgi duyan kurum ve kuruluşlar için yararlı olmasını diliyorum.

Davut YILMAZ
Genel Müdürü
Savunma tedarik sisteminde veya süreçlerine toplam bütçeden ayrılan payın, ülke ekonomilerinde yaşanan krizlere ve silahlı kuvvetlerin yapı ve sayıca küçülmesine bağlı olarak genel anlamda bir düşüş trendi gösterdiği bilinmektedir.

Savunma tedarik sisteminde veya süreçlerine toplam bütçeden ayrılan payın, ülke ekonomilerinde yaşanan krizlere ve silahlı kuvvetlerin yapı ve sayıca küçülmesine bağlı olarak genel anlamda bir düşüş trendi gösterdiği bilinmektedir. Stratejik ve Uluslararası Çalışma Merkezi (Center for Strategic & International Studies - CSIS) bünyesindeki Savunma - Endüstri İnisiyatif Grubu tarafından 37 Avrupa ülkesini kapsayacak şekilde hazırlanan raporda;

- Savunma bütçelerinde sabit bir şekilde daralma trendi olduğu,
- Yakın gelecekte bütçe artışi öngörülmediği,
- Bu durumun geçmiş dönem NATO Genel Sekreterleri’nden Jaap de Hoop Scheffer tarafından da dile getirildiği,
- Buna bağlı olarak 2001 yılında 251 milyar avro olan toplam savunma harcamalarının 2009 yılında 218 milyar avroya düştüğü belirtilmektedir. (Hofbauer ve diğerleri, 2010)
- Amerika Birleşik Devletleri’nde (ABD) 2011 yılında çıkarılan Bütçe Kontrol Yasası çerçevesinde; 2011 yılında 115,8 milyar dolar olan ABD savaş bütçesinin 2012 yılında 88,1 milyar dolara indirilmesinin,
- Savunma harcamalarının, ilk 10 yıl içerisinde %9’luk bir oran ile toplam 478 milyar dolara düşürülmesinin,
- Savunma harcamalarında ilk beş yıl içerisinde 259 milyar dolarlık bir düşüş sağlanmasının,
- 2017 yılına kadar savunma bütçesinde %22’lik bir düşüş sağlanmasının öngörüldüğü dile getirilmektedir. (Cordesman, 2013)

Söz konusu yasadan sonra ilk defa yapılan 2013 yılı savunma bütçe talebinde bir önceki talebe göre yaklaşık %10,3’lük bir düşüş görülmuştur. (Harrison, 2012)

Yapılan başka bir araştırmaya göre NATO üyesi Avrupa ülkelerinin 1985 - 1989 yılları arası savunma harcamalarının gayri safi milli hasılaya oranı %3,1 iken henüz 2008 ekonomik krizi gerçekleşmeden bu oran %1,7’ye düşmüş, aynı oran ABD’de %6’dan %4’e, İngiltere’de ise %4,4’ten %2,2’ye gerilemiştir. (Liberti, 2011)
SIPRI (2014) verilerine göre, dünyadaki 2013 yılı savunma harcamaları bir önceki yıla göre %1,9 oranında bir düşüş göstermiş; bu düşüş özellikle batı ülkeleri ile ABD’de yaşanan savunma bütçeye kısıtlamalarından kaynaklanmıştır. ABD ve İngiltere özelinde düşüş oranı sırasıyla %6 ve %1 olarak gerçekleşmiştir. (SIPRI, 2015)

Ayrıca özellikle gelişmiş ve gelişmekte olan ülkelerdeki vatandaşlık bilincinin yükselmesi ile birlikte devlet bütçelerinin şeffaflığı artmış ve daha önce savunma sektörüne ayrılan payın büyük bir bölümü diğer sektörlerde (eğitim, sağlık, ulaşım vb.) kaymaya başlamıştır. Bu durum; savunma sektöründe yer alan karar verici, planlayıcı, tedarikçi ve kullanıcıları sürekli daha verimli ve etkin çözüm arayışı içine girmeye zorlanmış ve halen zorlamaktadır.

Şekil 1: Silah Sistemlerinin Teorik Ömür Devri Maliyet Dağılımı (Jones ve diğerleri, 2014)
Çözüm arayışları, Şekil 1'de gösterilen silah sistemlerinin ömür devri maliyet profili kapsamında “altın oran” şeklinde de tanımlanan ve yaklaşık %70'lik bölümünün gerçekleştiği işletme-idame ve elden çıkarma fazlarına odaklanmıştır.

Bu konuda Jones ve diğerleri (2014) tarafından yapılan literatür taraması sonuçları Tablo 1'de yer almaktadır.

<table>
<thead>
<tr>
<th>Kaynak</th>
<th>Araştırma</th>
<th>Yıl</th>
<th>Oran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiorello, M.</td>
<td>Getting “Real” Data for Life Cycle Costing</td>
<td>1975</td>
<td>%50</td>
</tr>
<tr>
<td>General Accounting Office</td>
<td>O&S Costs of New Weapon Systems Compared with Their Predecessors</td>
<td>1977</td>
<td>%42,2</td>
</tr>
<tr>
<td>General Accounting Office</td>
<td>Logistics Planning for the M1 Tank</td>
<td>1981</td>
<td>%70–90</td>
</tr>
<tr>
<td>OSD CAIG</td>
<td>O&S Cost-Estimating Guide</td>
<td>1992</td>
<td>%78% & %84</td>
</tr>
<tr>
<td>DSMC</td>
<td>Acquisition Logistics Guide</td>
<td>1997</td>
<td>%60–80 & %72</td>
</tr>
<tr>
<td>IDA</td>
<td>Status of DoD’s Capability to Estimate the Costs of Weapon Systems: 1999 Update</td>
<td>1999</td>
<td>Sistem tipine göre değişir</td>
</tr>
<tr>
<td>General Accounting Office</td>
<td>Higher Priority Needed for Army O&S Cost Reduction Efforts</td>
<td>2000</td>
<td>%60–70</td>
</tr>
<tr>
<td>DoD</td>
<td>Weapon Systems Acquisition Reform Act of 2009</td>
<td>2009</td>
<td>%60–75</td>
</tr>
<tr>
<td>General Accounting Office</td>
<td>Littoral Combat Ship: Actions Needed to Improve Operating Cost Estimates and Mitigate Risks in Implementing New Concepts</td>
<td>2010</td>
<td>%70</td>
</tr>
<tr>
<td>General Accounting Office</td>
<td>Improvements Needed to Enhance Oversight of Estimated Long-Term Costs for Operating and Supporting Major Weapon Systems</td>
<td>2012</td>
<td>%70</td>
</tr>
<tr>
<td>Dallosta & Simcik</td>
<td>Designing for Supportability: Driving Reliability, Availability, and Maintainability In While Driving Costs Out</td>
<td>2012</td>
<td>%65–80</td>
</tr>
</tbody>
</table>

Tablo 1: İşletme-İdame Maliyetleri Literatür Taraması (Jones ve diğerleri, 2014)
Literatür taraması sonuçları, söz konusu oranın %40-%90 aralığında olduğunu ve genel kabul görmüş bir oran olarak ele alınabileceğini göstermektedir; ancak bu oranın, her bir silah sistemi için gerçek veri ile yapılacak bir analiz sonucunda hesaplanması gerektiğini göstermektedir. (Jones ve diğerleri, 2014)

ABD Savunma Bakanlığı envanterinde bulunan kara, deniz ve hava platformlarının 2009 yılı rakamlarına göre işletme-idame maliyetlerinin toplam ömür devri maliyetlerine oranının %61 ile %73 arasında olduğu (Şekil2), savunma sistemlerinin karmaşıklığının artması ile birlikte bu oranın artma trendi göstereceği ve söz konusu oranın uzun bir süre %60-%80 aralığında seyrettiği tespit edilmiştir. (Defence Acquisition University, 2011)

İngiltere Savunma Bakanlığı verilerine göre savunma sistemlerinin işletme-idame maliyetleri, toplam ömür devri maliyetlerinin %60 - %80’i arasında gerçekleşmektedir. (Gansler ve diğerleri, 2012) İngiltere Savunma Bakanlığı envanterinde yer alan farklı savunma platformlarına ilişkin veriler Tablo2’de sunulmuştur.

<table>
<thead>
<tr>
<th>Platform/Sistem</th>
<th>Tedarik Maliyetinin Ömür Devri Maliyetine Oranı</th>
<th>İşletme-İdame Maliyetinin Ömür Devri Maliyetine Oranı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su Üstü Gemileri</td>
<td>%40</td>
<td>%60</td>
</tr>
<tr>
<td>Gemi Elektroniği</td>
<td>%40</td>
<td>%60</td>
</tr>
<tr>
<td>Helikopterler</td>
<td>%20</td>
<td>%80</td>
</tr>
<tr>
<td>Denizaltı</td>
<td>%30-40</td>
<td>%60-70</td>
</tr>
</tbody>
</table>

Tablo 2: İngiltere Savunma Bakanlığı İşletme-İdame Maliyet Oranları (Gansler ve diğerleri, 2012)
İngiltere Savunma Bakanlığı tarafından su üstü gemileri, bu gemilerde kullanılan elektronik sistemler, helikopterler ve denizaltıların %80'lik bir oranda diğer platform / sistemlere göre daha yüksek seviyede gerçekleştiğini tespit edilmiştir. (Gansler ve diğerleri, 2012)

Savunma sistemlerinin toplam örnek devri maliyetlerinin büyük oranda işletme - idame safhasında gerçekleşmesine bağlı olarak “Akıllı Alıcı (Smart Buyer)”, “Akıllı Tedarik (Smart Acquisition)” ve “Entegre Lojistik Destek (Integrated Logistics Support)" gibi yaklaşımların uygulanması, etkin ve verimli çözüm arayışlarının temelini oluşturmuştur.

“Akıllı Alıcı” yaklaşımlının başlangıç noktası, kamudaki yönetim süreçlerinin daha etkin bir hale dönüştürülmesi kapsamında dış kaynak kullanımın hayata geçirilmesi olmakta était. Akıllı Alıcı kavramı, dış kaynak kullanım süreçlerinin başarılı bir şekilde işletilebilmesini sağlamak üzere özel sektörden tedarik edilecek mal ve hizmetlerin detaylı bir şekilde tescil edebilecek kapasiteye sahip alıcıları tanımlamaktadır. (Kettl, 1997)

Akıllı Alıcı yaklaşımında temel olarak “ne tedarik edileceği”, “kimdenden tedarik edileceği” soruların cevaplanmasını sağlayan, özel sektörden tedarik edilecek mal ve hizmetlerin detaylı bir şekilde tescil edilecek kapasiteye sahip alıcıları tanımlamaktadır. (Kettl, 1997)

Karmaşık tedarik süreçlerinin yürütülmesinde yetersiz kalma riski, ABD Savunma Bakanlığı tarafından tekrar ele alınmıştır (Gray, 2009, Shaft, risk paylaşımı ve öz yetenek olakli yeri bir yaklaşım ile özel sektör ile daha fazla iş birliği yapma gerektiğini ortaya koymuştur. (Kirkpatrick, 2003)

ELD yaklaşımlı ile birlikte, lojistik disiplinler (ürün destek yönetimi, tasarım etki, sürdürülebilirlik mühendisliği, ikmal destek, bakım planı ve yönetim, paketleme-elleçleme-depolama-taşıma, teknik veri, yedek parça, eğitim, insan kaynakları, tesis ve altyapı ve bilgisayar kaynakları) arasındaki entegrasyona odaklanılmış ve en iyi değer yaratma konusunda çaba gösterilmiştir.

PDL, stratejik kararlar ile hayata geçirilen ve gerçek katma değer üretmeye yönelik bir çözüm yoludur. (Kobren, 2009) Berkowitz ve diğerleri (2005) PDL’nin, karmaşık bir sistemlerin onarımında yaşayan bir kültür değişimini gerektirdiği ve özellikle PDL ile birlikte harekâtta hazırlık seviyelerinde ortalama %20-40 oranında işeyleme, toplam ölüm devri maliyetlerinde ise ortalama %15-20 oranında bir düşüş meydana geldiği tespit edilmiştir. (Kobren, 2009) ABD Savunma Tedarik Üniversitesi (Defense Acquisition University) raporları, PDL’nin yalnızca barış şartlarında değil aynı zamanda kriz ve savaş şartlarında da etkinlikle uygulanabildiğini ortaya koymuştur. (Goure, 2009)

Savunma sektöründe ihraçat gerililerini artırmaya stratejik bir hedef olarak belirlemiş olan ülkemiz (SSM 2012-2016 Stratejik Planı: 28) de PDL yaklaşımasını benimsemesi kaçılmazdır. Ülkemizde özellikle savunma sanayi sektöründe PDL yaklaşımanın benimsenmesi ve yaygınlaşması açısından katma değer sağlayacak bilimsel çalışmaların özel bir öneme sahip olduğu değerlendirilmiştir. (SSM 2012-2016 Stratejik Planı: 49)

Son yıllarda Savunma Sanayii Müsteşarlığının (SSM) PDL konusunu gündemine alması (SSM 2012-2016 Stratejik Planı: 27) ve bu yönde kendi yapısında değişimler yaparak “Sistem Projeleri ve Lojistik Müsteşar Yardımcılığı” kurması, konunun önemine katkı yapacak bir faktördür. SSM Sistem Projeleri ve Lojistik Müsteşar Yardımcıları tarafından:

- Türk savunma sanayiinde lojistik sistemin kapsamını bir yapsal dönüşüme ihtiyaç duyduğu,
- Savunma sistem ve platformlarının "desteklenbilir tasarlanması" ve "sürdürülebilir desteklenmesinin" SSM’nin stratejik hedefleri arasında yer aldığı,
- İşletme-ideame safhasında maliyet etkin modeller yerarılması gerektiğine,
- PDL’nin de bu kapsamında en uygun model olduğu belirtilmiştir. (MSI, 2014)
PERFORMANSA DAYALI LOJİSTİK (PDL)
1. Performansa Dayalı Lojistik (PDL)

1.1. Genel

Savunma sektörü başta olmak üzere karmaşık, işletme ve idamesi güç ve pahalı olan sistemlerin kullanıldığı sektörlerde; ömür devri maliyetinin büyük bölümü işletme - idame safhasında geçmektedir ve bu sistemlerin hazır bulunulduğu açısından kritik arz etmesi nedeniyle yeni tedarik stratejileri arayışı girdi ve yaygınlığı giderek artan PDL yaklaşımı bir tedarik ve ürün destek stratejisi olarak tercih edilmiştir. (Kumar ve diğerleri, 2007)

PDL; son kullanıcıların ihtiyaçlarını doğrultusunda güvenilir, idame edilebilir ve hazır bulunabilir sistemlerin tedarik edilmesine ve bu sistemlerin, maliyet etkin bir şekilde işletme-idamesinin yapılmasına odaklanan stratejik bir yaklaşımdır. (Kobren, 2009)

PDL yaklaşımının uygulanması aşağıdaki temel şekillendiricilere bağlıdır:

- Ana sistemlerin fonksiyonel eskiliği,
- Kamu (kullanıcı kurum) ve özel (destekleyici kurum) kurumlarınin destek altyapısı,
- Kurumlar arası işbirliği esnekliğini belirleyen mevzuat.

Bu şekillendiriciler ışığında her bir PDL uygulaması özgün bir tasarıma ve özel bir amaça sahiptir. (Defense Acquisition University PBL Guide, 2005)

Randall ve diğerleri (2012); savunma, enerji ve ulaşım gibi sektörlerde kullanılan karmaşık sistemlerin, ömür devrinin ileriki safhalarında daha fazla bakım ve onarına ihtiyaç duyacağı, bu bakım ve onarımın geleneksel yaklaşımın öngörüdüğü münferit işlemler ile maliyet etkin bir şekilde yapılabildiğini belirtmektedir. Geleneksel yaklaşımda, belirlenen bir performans değeri veya çıktığı ulaşılabilir bir defalı ve kısa dönemli sözleşme yapılır. Buna karşılık PDL yaklaşımında tedarik veya destekleme konu olan sistemin toplam performansına odaklanılır, sadece katma değer yaratan mal ve hizmetlerin недir, uzun vadeli ve stratejik ilişkiler kurulur.
PDL konusunu ABD özelinde ele alan bir araştırmada, ABD Savunma Bakanlığı'nın PDL'yi bir ürün destek stratejisi olarak ele almaya iten etkenler aşağıdaki şekilde tespit edilmiştir:

- Yeni ve evanterdeki eski silah sistemlerinin bakım, işletme ve lojistik destek maliyetlerinin yükselmesi,
- Bir lojistik dönüşüme ihtiyaç duyulması ve bu konuda ABD Kongresi tarafından verilen direktifler,
- Son kullanıcının desteklenmesi kapsamında bekleme sürelerini düşürme ihtiyacı,
- Savaşma kabiliyetini artırmak için silah sistemlerinin modernize edilme ihtiyacı,
- Silah sistemlerindeki demodelik problemlere çözüm arayışı,
- Özel sektör süreçleri ile kazanılabacak faydalar konusunda farkındalık,
- Özel sektör süreçleri ile kazanılabacak faydalar konusunda farkındalık,
- PDL uygulamalarından alınan olumlu neticeler. (Berkowitz ve diğerleri, 2003; 2005)

ABD Savunma Bakanlığı'nda PDL uygulanan programlarda aktif olarak yöneticilik yapan 26 kişi ile yapılan bir araştırmada PDL'yi uygulanabilir ve cazip bir ürün destek stratejisi yaptığı tespit edilen 7 faktör aşağıdaki belirtilmiştir: (Devries, 2005)

- Tedarik zinciri yönetimi,
- İş birliği,
- Performansa dayalı sözleşmeler,
- Performans parametreleri,
- Toplam ömür devri yönetimi,
- En iyi özel sektör uygulamaları,
- Toplam ömür devri maliyeti.

Randall ve diğerleri (2011) tarafından yapılan başka bir araştırma, PDL'nin başarılı bir şekilde uygulanmasını etkileyebilecek yorumlu faktörler ele alınmış ve uygulanan hizmete çevirme etkisi, hizmete geçilme, değişim sürecinin dengesini, müşterinin uygulama sürecini ve birçok başka konuyu etkilemiştir. (Irene ve diğerleri, 2009)

İngilteredeki iki savunma sisteminin işletme-idamesine yönelik yapılan sonuç nedir oldugu sözleşmelerin sistem dünüyesi ile incelendiği bir araştırma, sözleşme tiplerinin verilen hizmetin dinamiklerini değiştirdiği, sözleşme yapantıların sözleşme yükümlülüklerinin üzerinde bir etkileşim içerisinde girdikleri, bu etkileşimden kaynaklanan karmaşık bir ortam oluşturduğu ve sözleşmeye taraf olan paydaş davranışlarının önem derecesi açısından ön plana çıktığını tespit edilmiştir. (Irene ve diğerleri, 2009)
PDL TANIMLAMALARI
2. PDL Tanımlamaları

PDL kavramının literatürde farklı tanımları yer almaktadır; ancak söz konusu farklı tanımlamaların bakıldığında hemen hemen hepsinin üç ortak temayı işlediği görülmektedir. (Berkowitz ve diğerleri, 2005)

● Ömür devri yönetimi kapsamında ürünlerin tedarik ve işletme-idame safhalarının bütünleşik olarak ele alınması,
● Teşvik sistemi,
● Performans hedefleri.

ABD Savunma Bakanlığı Savunma Tartıık Rehberi, PDL tanımini için Savunma Tartıık Üniversitesi Tartıık Topluluğu web portalını (DAU Acquisition Community Connection) referans olarak göstermektedir. PDL, diğer adı ile Performansa Dayalı Ömür Devri Ürün Destek, “silah sistemlerinin harekata hazırlık seviyelerini optimize etmek üzere bütünleşik ve maliyet etkin performans çözümleri üreten sonuç odaklı bir ürün destek stratejisi” olarak tanımlanmaktadır. (DAU Acquisition Community Connection, 2015)

PDL, ABD Deniz Kuvvetleri PDL Dokümanı’nda ise “genellikle uzun dönemli sözleşmeler çerçevesinde, ürün destek etkinliğini artırmak ve toplam ömür devri maliyetini düşürmek amacıyla, destek sağlayıcıların (kamu, özel sektör veya kamu-özel sektör iş birliği) son kullanıcı isterlerine odaklanan ve tüm paydaşların birlikte yaratmak ve bir tedarik zinciri boyunca bilgi ve birikim paylaşmaya odaklanan strateji” olarak tanımlanmaktadır. (US Navy PBL Guidance, 2003)

ABD Kara Kuvvetleri PDL’yi “silah sistemlerinin harekata hazırlık seviyelerini optimize etmek maksadıyla tedarik ve toplam ömür devri maliyetini düşürmek amacıyla, destek sağlayıcıların (kamu, özel sektör veya kamu-özel sektör iş birliği) son kullanıcı isterlerine odaklanan ve tüm paydaşların birlikte yaratmak ve bir tedarik zinciri boyunca bilgi ve birikim paylaşmaya odaklanan strateji” olarak tanımlanmaktadır. (US Navy PBL Guidance, 2003)

Mahon (2007), PDL’yi “münferit parça tedarikinden performans tedarikine doğru kültürsel değişimi tarif eden yaratıcı bir tedarik yaklaşımı” olarak tanımlanmaktadır. PDL, Cicioğlu (2009) tarafından “yetki ve sorumlulukların kesin hatlarıyla belirlenmiş olduğu uzun dönemli lojistik destek anlaşmaları aracılığıyla bir sistemin performans hedeflerini karşılamak ve optimum seviyede hazırlık olmasını sağlamak için tasarlanan entegre, kabul edilebilen maliyetli bir performans paketi olarak lojistik desteği sağlamak için satın alınması” olarak tanımlanmıştır. PDL, “yeni bir karmaşık savunma sistemi için malzeme çözümü aşamasından, envanterdeki bir sistem için ise işletme-idame aşamasından başlamak üzere ömür devrinin tüm safhalarını kapsayan, uzun vadeli bir destek stratejisi doğrultusunda, belirlenen performans hedeflerinin elde edilebileceği maksadıyla kamu-özel sektör imkan ve kabilletlerinin tüm paydaşların kendi öz yeteneklerine odaklanmasını sağlayacak şekilde bir araya getirilerek tasarlanan ve uygun bir teşvik mekanizması ile hayata geçirilen bütünleşik lojistik stratejisi” şeklinde tanımlanmıştır.
PDL GELİŞİMİ
3. PDL Gelişimi

a. Amerika Birleşik Devletleri

ABD Savunma Bakanlığı’nın PDL yaklaşımına ilişkin geçmiş olduğu evreler Şekil 4’te yer alan dört başlık altında ele alınmaktadır. (DAU Acquisition Community Connection, 2015)

![Sekil 4: ABD Savunma Bakanlığı PDL Evrimleşmesi](image-url)

<table>
<thead>
<tr>
<th>Yıl</th>
<th>Ödül Seviyesi</th>
<th>Program</th>
<th>Kuvvet</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Sistem</td>
<td>F-117 Nighthawk</td>
<td>Hava Kuvvetleri</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td></td>
<td>Alt Sistem</td>
<td>F-404 Engine</td>
<td>Deniz Kuvvetleri</td>
<td>General Electric</td>
</tr>
<tr>
<td></td>
<td>Parça</td>
<td>Navy APU</td>
<td>Deniz Kuvvetleri</td>
<td>Honeywell</td>
</tr>
<tr>
<td></td>
<td>Özel</td>
<td>Shadow 200 Tactical UAS</td>
<td>Kara Kuvvetleri</td>
<td>AAI</td>
</tr>
<tr>
<td>2006</td>
<td>Sistem</td>
<td>HIMARS</td>
<td>Kara Kuvvetleri</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td></td>
<td>Alt Sistem</td>
<td>H-60 FLIR</td>
<td>Deniz Kuvvetleri</td>
<td>Raytheon</td>
</tr>
<tr>
<td></td>
<td>Parça</td>
<td>F/A-18 & F-14 Cockpit Displays</td>
<td>Deniz Kuvvetleri</td>
<td>Rockwell</td>
</tr>
<tr>
<td>2007</td>
<td>Sistem</td>
<td>F/A-18 (FRST)</td>
<td>Deniz Kuvvetleri</td>
<td>Boeing</td>
</tr>
<tr>
<td></td>
<td>Alt Sistem</td>
<td>ITAS</td>
<td>Kara Kuvvetleri</td>
<td>Raytheon</td>
</tr>
<tr>
<td></td>
<td>Parça</td>
<td>GE T700 Engine</td>
<td>Deniz Kuvvetleri</td>
<td>General Electric</td>
</tr>
<tr>
<td>2008</td>
<td>Sistem</td>
<td>F-22</td>
<td>Hava Kuvvetleri</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td></td>
<td>Alt Sistem</td>
<td>ARL-67 Radar Warning System</td>
<td>Deniz Kuvvetleri</td>
<td>Raytheon</td>
</tr>
<tr>
<td></td>
<td>Parça</td>
<td>TADS ATC System</td>
<td>Kara Kuvvetleri</td>
<td>General Dynamics</td>
</tr>
<tr>
<td></td>
<td>Sistema</td>
<td>CASS</td>
<td>Deniz Kuvvetleri</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td></td>
<td>Sistema</td>
<td>HIMARS</td>
<td>Kara Kuvvetleri</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>2009</td>
<td>Alt Sistem</td>
<td>AN/ALO-126 ECS</td>
<td>Deniz Kuvvetleri</td>
<td>BAE Systems</td>
</tr>
<tr>
<td></td>
<td>Sistema</td>
<td>F-404 Synchronized Supply Chain</td>
<td>Savurma Lojistik Ajansı</td>
<td>General Electric</td>
</tr>
<tr>
<td></td>
<td>Parça</td>
<td>AN/UYQ-70(V) Display System</td>
<td>Deniz Kuvvetleri</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>2010</td>
<td>Sistema</td>
<td>Shadow Tactical Unmanned Aircraft System</td>
<td>Kara Kuvvetleri</td>
<td>AAI</td>
</tr>
<tr>
<td></td>
<td>Alt Sistem</td>
<td>AH-64D Apache</td>
<td>Kara Kuvvetleri</td>
<td>Boeing</td>
</tr>
<tr>
<td></td>
<td>Parça</td>
<td>H-46 Sea Knight / H-53 Sea Stallion APU</td>
<td>Deniz Kuvvetleri</td>
<td>Hamilton Sundstrand</td>
</tr>
<tr>
<td></td>
<td>Sistema</td>
<td>Joint STARS Total System Support Responsibility Team</td>
<td>Hava Kuvvetleri</td>
<td>Northrop Grumman</td>
</tr>
<tr>
<td></td>
<td>Alt Sistem</td>
<td>AH-64D Apache Sensors</td>
<td>Kara Kuvvetleri</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td></td>
<td>Parça</td>
<td>Tire PBL Team</td>
<td>Deniz Kuvvetleri</td>
<td>Michelin Aircraft Tire</td>
</tr>
<tr>
<td>2012</td>
<td>Sistema</td>
<td>C-17 Globemaster Integrated Sustainment Partnership</td>
<td>Hava Kuvvetleri</td>
<td>Boeing</td>
</tr>
<tr>
<td></td>
<td>Alt Sistem</td>
<td>P-3 AN/APS-137DV V5 Radar</td>
<td>Deniz Kuvvetleri</td>
<td>Raytheon</td>
</tr>
<tr>
<td></td>
<td>Parça</td>
<td>Industrial Prime Vendor, Depot Consumables</td>
<td>Savurma Lojistik Ajansı</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td></td>
<td>Sistema</td>
<td>Combat Operations Center, TSQ-239(V)</td>
<td>Deniz Kuvvetleri</td>
<td>General Dynamics</td>
</tr>
<tr>
<td></td>
<td>Alt Sistem</td>
<td>Apache Sensors, Modernized TADS/PNVS (M-TADS/PNVS)</td>
<td>Kara Kuvvetleri</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td></td>
<td>Parça</td>
<td>Global Patriot</td>
<td>Kara Kuvvetleri</td>
<td>Raytheon</td>
</tr>
<tr>
<td>2013</td>
<td>Sistema</td>
<td>F414 Engine</td>
<td>Deniz Kuvvetleri</td>
<td>General Electric</td>
</tr>
<tr>
<td></td>
<td>Sistema</td>
<td>F-22</td>
<td>Hava Kuvvetleri</td>
<td>Lockheed Martin, Boeing, P&W</td>
</tr>
<tr>
<td></td>
<td>Alt Sistem</td>
<td>Sniper Advanced Targeting Pod</td>
<td>Hava Kuvvetleri</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td></td>
<td>Parça</td>
<td>H-3SE</td>
<td>Deniz Kuvvetleri</td>
<td>Sikorsky</td>
</tr>
<tr>
<td>2014</td>
<td>Sistema</td>
<td>Javelin Joint Venture</td>
<td>Hava Kuvvetleri</td>
<td>Raytheon & Lockheed Martin</td>
</tr>
<tr>
<td></td>
<td>Alt Sistem</td>
<td>AN/ARC-210 Radio Set</td>
<td>Deniz Kuvvetleri</td>
<td>Rockwell Collins</td>
</tr>
<tr>
<td></td>
<td>Parça</td>
<td>EA-6B Hydraulics</td>
<td>Deniz Kuvvetleri</td>
<td>Textron Systems (AAI)</td>
</tr>
</tbody>
</table>

Tablo 3: Ödüle Layık Görülen ABD PDL Uygulamaları (DAU Acquisition Community Connection, 2016)
ABD'de yaşanan ivmelenme aşaması ile birlikte tedarik paydaşlarının PDL konusuna dikkati çekilmiş, temel lojistik dokümanları revize edilerek tekrar yayımlanmıştır ve ilgili dokümanlarda PDL yaklaşımı stratejik bir seçim olarak ele alınmıştır. Akademisyenler Recebe seçeneği ileliğin, bilimsel çalışma sayısının artırılmasına ve bilinçlendirme faaliyetlerinin yaygınlaştırılmasına bu evrede ayrıra önem verilmiştir. ABD Savunma Tedarik Üniversitesi’nin PDL konusunda mükemmeliyet merkezi olarak belirlenmesi (Kobren, 2009) ve çeşitli enstitülerin (Lexington, vb.) PDL kapsamında yoğun olarak çalışması, ABD’nin bu konuda akademik çevrede vermiş olduğu öndemi gösteren adımlar olarak gösterilebilir.

PDL; yeni, yenilenmiş veya envanterdeki sistemlerin ömür devri boyunca lojistik desteğinin sağlanmasıyla yönelik bir yaklaşım olup Şekil 5'te gösterilen konsept çerçevesinde dört kategoride uygulanması mümkündür. (Defense Acquisition Guidebook, 2015)
Birinci kategoride; kamu tarafından tüm lojistik destek ihtiyaçları belirlenmekte, ihtiyaç duyulan malzemeler satın alınmakta ve performans ölçümü yapılmaktadır. Ürün destek sağlayıcısı tarafından ise performansa dayalı yapılan sözleşmedeki parametreler doğrultusunda münferit işlemler yerine getirilmektedir. Sistemlerin filo hazırlanış sorumluluğu ile belirlenen hazır hazırlanış değeri ulaşılaması kapsamdaki olası maliyet riskinin büyük kısmı kamu otoritesinde kalmaktadır.

İkinci kategoride; kamu tarafından tüm lojistik destek ihtiyaçları belirlenmekte, ihtiyaç duyulan malzemeler satın alınmakta ve performans ölçümü yapılmaktadır. Ürün destek sağlayıcısı ise planlama ile bakım ve veya tedarik zinciri süreçlerine dâhil olmakta, filo hazırlanış veya ortalama faal süre değişkenlerine ilişkin sorumluluk almaktadır. Sistemlerin filo hazırlanış sorumluluğu ile belirlenen hazır hazırlanış değerine ulaşabileceği kapsamdaki olası maliyet riskinin büyük kısmı kamu kalmakta; ancak ürün destek sağlayıcı birinci kategoriden daha fazla bir risk üstlenmektedir.

Üçüncü kategoride; kamu tarafından yalnızca silah sistem sayısı ile filo hazırlanış değerleri belirlenmekle performans ölçümü yapılmaktadır. Ürün destek sağlayıcısı ise planlama ile iş birlikte tedarik zinciri süreçlerine dâhil olmakta, filo hazırlanış değişkenlerinden tam olarak sorumlulu olmakta, planlama, tasarım, bakım/onarım ve tedarik zinciri süreçlerini işletmektedir. Bu kategoride ürün destek sağlayıcısı daha fazla filo hazırlanış sorumluluğu ile belirlenen hazır hazırlanış değerine ulaşılabilme kapsamdaki olası maliyet riskinin büyük kısmını üstlenmektedir.

Dördüncü kategoride ise kamu tarafından belirli aralıklar ile yalnızca performans ölçümü yapılmaktadır. Ürün destek sağlayıcısı ise silah sistemlerinin sayısı da dahil olmak üzere toplam harekât kabiliyetinden sorumluluk almaktadır ve sistemler için ömür devri boyunca işletilecek tüm süreçleri (tasarım, konfigürasyon, planlama, tasarım, bakım/onarım, tedarik zinciri vb.) yerine getirilmektedir. Sistemlerin filo hazırlanış sorumluluğu ile belirlenen hazır hazırlanış değerine ulaşılabilme kapsamdaki olası maliyet riskinin büyük kısmını ürün destek sağlayıcısı tarafından üstlenmektektedir.

Bu iş modeli; platform, sistem, alt sistem ve parça bazında performansa dayalı bir ürün destek stratejisinin planlanması, geliştirilmesi, uygulanması ve yönetimini tanımlayan bir model olarak ilgili paydaşlar arasındaki yetki, sorumluluğun ve ilişkilerin tanımlanmaktadır. İş modelinde; en üstte son kullanıcısı (warfighter), program yöneticisi (program manager) ve ürün destek yöneticisi (product support manager) kamu otoritesi olarak yer alır. Sistemlerin ömür devri destek stratejileri son kullanıcının ihtiyaçlarını odak noktasını yaparak bu kamu otoritesi tarafından belirlenmektedir.

Program yöneticisi, sistemlerin tüm ömür boynuzca yönetiminden sorumluluk paylaşması olarak bu sorumlulukunun bir kamuda birimi olarak ürün destek yöneticisine (son kullanıcının bağlı olduğu karargâh, ilgili bakım birimi, ilgili lojistik birimi vb.) devredebilmekle ve ürün destek yöneticisi de model kapsamdaki üst düzey işlevleri yerine getirmektedir.

- Son kullanıcı ihtiyaçları ile öngörülen desteği bütünleştirilmesi
- Ürün destek yönetim ekibinin/PDL ekibinin oluşturulması
- Ana hattın (baseline) oluşturulması
- Performans parametrelerinin belirlenmesi
- İş analizinin yapılması
- Ürün destek değer analizinin yapılması
- Ürün destek yönteminin belirlenmesi
- Ürün destek entegratörünün belirlenmesi
- Ürün destek sağlayıcılann belirlenmesi
- Finansal faktörlerin belirlenmesi
- Ürün destek düzenlemelerinin yapılması
- Uygulama ve değerlendirme
b. İngiltere

İngiltere’de yaşanan savunma tedarik sürecinin evrimleşmesi Şekil 7’de gösterilmiştir. Bu evrimleşme, savunma sistemlerinin tedariki ve savunma sanayine ilişkin hazırlanan raporlar ile paralelde bu alanlarda atılan değişim adımları şeklinde gerçekleşmiştir.

Şekil 7: İngiltere Savunma Bakanlığı Tedarik Süreci Evrimleşmesi (Gansler ve diğerleri, 2012)

Tedarik süreci evrimleşmesi, 1990’lı yılların sonunda akıllı tedarik yaklaşımının benimsenmesi ile başlamaktadır. Bu yaklaşım ile birlikte 2005 yılına kadar geçen sürede;

- Savunma sistemlerinin tek elden tedariki maksadıyla Savunma Tedarik Ajansı kurulmuş,
- Tedarik edilen sistemlerin işletme-idame safhasında lojistik desteğinin sağlanması için Savunma Lojistik Organizasyonu teşkil edilmiş,
- Yetenek değerlendirme, ihtiyaç belirleme ve program yönetimi süreçlerinin etkin bir şekilde yürütülebilmesi ve bu konularda strateji ve politikaların oluşturulabilmesi için Donanım Yetenek Müşteri yapısı oluşturulmuştur.

2009 yılından günümüzde kadar geçen sürede; ömür devri yönetim yaklaşımı çerçevesinde özel sektörün daha fazla rol aldığı iş modelleri kurgulanmış; tedarik ve lojistik destek projelerinde bu iş modellerinin uygulanmasına devam edilmiştir. Bu kapsamda tedarik sisteminde, sırasıyla geleneksel tedarik, özel sektör tarafından yedek parça sağlanması, hazır bulunuş sözleşmeleri ile tedarik ve yetenek kazanım sözleşmeleri ile tedarik modelleri yer almaktadır. (Gansler ve diğerleri, 2012)

c. Türkiye

Türk savunma sanayii sektöründeki PDL yaklaşımı; temelleri 1990’lı yılların ortalarına kadar giden, evrimleşme şeklinde kendini gösteren ve halen SSM öncülüğünde sürülen ömür devri yönetimi ve PDL odaklı bir lojistik dönüşüm çabası olarak karşısında çıkmaktadır. Türk savunma sanayii PDL gelişimi Şekil 8'de gösterilmiştir.

![Şekil 8: Türk Savunma Sanayiinde PDL Gelişimi](image_url)

Dönüşüm kapsamında ayrıca SSM Stratejik Planı’nda “sürdürülebilir ve rekabetçi savunma sanayinin mimari olmak” amacıyla “savunma sanayinin ürün tasarımından üretim ve lojistik destegine uzanan omur devrinin tamamında etkin rol almaması sağlamak” hedefi belirlenmiştir. Bu hedefin gerçekleştirilmesine yönelik olarak omur devri yönetimi kapsamında lojistik yol haritasının oluşturulması, pilot projelerde PDL uygulanması ve lojistik destek sözleşmelerinin yapılması gibi somut projeler planlanmıştır. (SSM 2012-2016 Stratejik Planı: 27)

Yukarıda değinilen ömür devri yönetiminde yaklaşıma geçiş aşamaları; SSM Sistem Projeleri ve Lojistik Müsteşar Yardımcısı tarafından savunma sanayiinde yapısal bir dönüşüm ve lojistik destekte yeni bir dönem olarak tanımlanmıştır. (Savunma ve Havacılık, 2011) Savunma Sanayii Müsteşarı tarafından ise Türk Savunma Sanayiinde yeni bir dönemin başlangıcı olarak nitelendirilmiş (Defence Turkey, 2012) ve bu kapsamda PDL’nin önemi vurgulanmıştır.

d. Diğer

PDL UYGULAMALARINA İLİŞKİN SONUÇLAR
4. PDL Uygulamalarına İlişkin Sonuçlar

PDL uygulanan programlar üzerinde kamu, özel sektör ve akademik çevreler tarafından yapılan araştırmalarda; PDL yaklaşımı sayesinde sistemlerin göreve hazırlık seviyelerinde ortalama %20-40 oranında iyileşme, toplam ömür maliyetlerinde ortalama %15-20 oranında bir düşüş (Miller, 2008; Kobren, 2009; Goure, 2009), sistemlerin faal olarak çalışma sürelerinde ortalama %40’lık bir artış, lojistik gecikme zamanlarında ise yaklaşık %70 oranında bir iyileşme (Randall ve diğerleri, 2011) meydana geldiği tespit edilmiştir.

ABD’de PDL uygulama sonuçları üzerinde yapılan bir diğer araştırma;

- Hazır bulunuluk değişkeni değerlerinde F/A-18 programında %23, deniz kuvvetleri uçak lastiklerinde %17, F-22 uçak platformlarında %15, UH-60 helikopterlerinin aviyoniklerinde %14, F404 motorlarında %46 oranında,
- Lojistik bekleme zamanı değişkeni değerlerinde ise F/A-18 programında %74, deniz kuvvetleri uçak lastiklerinde %92, F-22 uçak platformlarında %20, UH-60 helikopterlerinin aviyoniklerinde %85, F404 motorlarında ise %25 oranında iyileşme tespit edilmiştir. (Fowler, 2009)

ABD Savunma Tedarik Üniversitesi raporları, PDL’nin yalnızca barış şartlarında değil, aynı zamanda kriz ve savaş şartlarında da etkinlikle uygulanabilirğini ortaya koymaktadır. Örneğin Irak operasyonlarında;

- CIWS sisteminin göreve hazırlık seviyesi %80’den %89’a yükselmiş,
- F-14 göreve hazırlık seviyesi ise %73’ten %90’a çıkmış,
- F-18’lerin ortalama lojistik bekleme zamanları (logistics lead time) 47 günden 7 güne indirilmiş,
- Helikopterlerin ortalama bakım sürelerin 261 günden 76 güne çekilmiştir. (Goure, 2009)

- CH-47 helikopter programında İngiltere Silahlı Kuvvetleri 250 milyon Dolar,
- C-17 programında ABD Hava Kuvvetleri 477 milyon Dolar,
- F/A-18 programında ABD Deniz Kuvvetleri 688 milyon Dolar,
- AH-64 programında ise ABD Kara Kuvvetleri 350 milyon Dolar kazanç elde etmiştir. (Randall ve diğerleri, 2012)

ABD Havaçılık Endüstrisi Birliği tarafından 23 adet PDL uygulaması üzerinde yapılan bir araştırmada PDL ile ortalamaya yıllık 21 milyon Doların üzerinde bir kazanc sağlandığı ve hazır bulunuluk seviyelerinde de yaklaşık %16 oranında iyileşme sağlandığı tespit edilmiştir. (Goure, 2009) PDL uygulanan 21 adet ABD savunma programı üzerinde Boyce ve Banghart (2012) tarafından yapılan bir araştırmada PDL yaklaşımları ile uygun bir destek modeline sahip sistemlerin, PDL yaklaşımı uygulanmayan sistemlere oranla daha maliyet etkisiz oldukları ve hazır bulunuluk seviyelerinin daha yüksek olduğu tespit edilmiştir.

PDL yaklaşımı modernizasyon projelerinin bağıldan itibaren uygulanabildiği gibi, halen kullanımda olan sistemlerin işletme-idame safhasında da başarı ile uygulanabileceği görülmektedir. Örneğin ABD’de, PDL yaklaşımları ile yürütülen “demo modeli yönetim” süreci sayesinde;

- B-1 programında 316 milyon Dolar,
- Apache programında 200 milyon Dolar,
- Virginia Denizaltı programında 124 milyon Dolar,
- FMS kapsamında Dijital Ekran Göstergesi projesinde ise 2,3 milyon Dolar tasarruf sağlandığı tespit edilmiştir. (US Defense Standardization Program Office Diminishing Manufacturing Sources and Material Shortages (DMSMS) Guidebook, 2012)

PDL, yalnızca kamu tarafından benimsenen bir yaklaşım olmayıp aynı zamanda özel sektörde de uygulama alanını bulan bir işletme-idame stratejisi olarak ön plana çıkmaktadır. “Saat Başına Güç (Power by the Hour)” konsepti, ABD özel sektör hava yollarında yaygın ve uzun süredir kullanılmaktadır ve PDL’nin özel sektördeki karşılığı olarak tanımlanmaktadır. (Kim ve diğerleri, 2006) Bu konseptte, uçak motoru üreticisi firmalar ile uzun dönemli stratejik iş birliklerine gidilmektedir ve her bir motorun faal olduğu saat başına üretici firmalara ödeme yapılmaktadır. (Goure, 2009) Bu konseptte, uçak üzerinde yapılan işe değil uçak tarafından yapılan işe odaklanmaktadır. (Vitasek ve diğerleri, 2006)

Randall ve diğerleri (2012) tarafından yapılan çalışmada aşağıda yer alan özel sektör PDL uygulama örnekleri yer almaktadır:

- Lufthansa Technik’in 1.600’den fazla uçağın bakım ve onarımını PDL sözleşmesi ile yapması,
- Boeing’in 787 tipi uçaklarının idamesi için PDL yaklaşıımı kullanması,
- Siemens’in raylı ulaşım sektöründe bütünleşik ve performans tabanlı bir yaklaşıımı benimsemişesi,
- Dünya Bankası’nın gelişmekte olan ülkelerdeki sağlıklı sistemlerinde performansa dayalı stratejiler uygulaması ve yaklaşık 35 ülkenin otoyol işletme ve idamesinde performansa dayalı yaklaşımlar benimsemiş olması.

Literatürde ayrıca, aşağıdaki yer alan diğer özel sektör PDL uygulamaları bulunmaktadır:

- Caterpillar, Honeywell, Rolls-Royce ve Allison firmaları da sattıkları ağır makine, jeneratör ve motorların desteğini PDL yaklaşıımı ile sağlamaktadırlar. (Goure, 2009)
- Sivil havacılıkta kullanılan uçakların 45 milyar Dolar değerindeki toplam işletme idame maliyetlerinin yaklaşık %70'lik kısmı, PDL uygulamaları kapsamında harcanmaktadır. (Randall ve diğerleri, 2010)

- Hollanda'da çok farklı bir sektör olan inşaat sektöründe yapılan bir araştırmada; PDL uygulanan büyük çaplı bir inşaat projesinde toplam ömür devri maliyetinde %20 oranında bir düşüş sağlandığı tespit edilmiştir. (Randall ve diğerleri, 2011)

- ABD'de yapılan bir araştırmda General Motors firmasının satış sonrası lojistik destek hizmetinden 9 milyar Dolar ciro yaptığı, bu cironun da 2 milyar Dolar'lık bir kar yarattığı ve bu karın aynı dönemde yapılan 150 milyar Dolar'lık araba satışını karından daha yüksek olduğu tespit edilmiştir. (Kim ve diğerleri, 2006)

PDL uygulamalarına ilişkin olumlu sonuçların yanında, literatürde öne çikan eleştiriler ise aşağıdaki şekilde sıralanabilir:

- ABD'de 29 adet PDL uygulaması üzerinde yapılan incelemede, yeterli seviyede iş analizinin yapılmadığı ve maliyet verilerinin sağlıklı bir şekilde toplanamadığı tespit edilmiştir. (United States Government Accountability Office Report, 2008)

- ABD'de 29 adet PDL uygulaması üzerinde yapılan incelemede, yeterli seviyede iş analizinin yapılmadığı ve maliyet verilerinin sağlıklı bir şekilde toplanamadığı tespit edilmiştir. (United States Government Accountability Office Report, 2008)

- PDL uygulamaları kapsamında literatürde, özellikle harekât alanındaki savunma sistemlerinin PDL kapsamında işletme ve idamesi kapsamında özel sektör firmalarının güvence konusundaki endişeler, çözümleme süreçlerinin uzunluğu ve uygulama sonuçlarının sağlıklı bir şekilde ölçülmemesi gibi üç temel sorundan bahsedilmektedir. (Büyükgüral, 2009)

- PDL uygulamalarında özel sektör firmaları ile oluşturulunan uzun vadeli stratejik birliklerin, kamu tarafında yüksek seviyede risk oluşturulabileceği ve bu riskin yönetilmesinin çok zor olduğu vurgulanmaktadır. (Gardner, 2008)

- Kamuda var olan yeteneklerin verimli bir şekilde kullanılmamasınetsesinde yatırım tekrarlarının yapılması, PDL uygulamalarında sıklıkla gözlemlenen problemlerden biri olarak ön plana çıkmaktadır. (Starks, 2005)

- ABD'deki biriktirme PDL uygulamaları, detaylı bir iş analizinin yapılması ve uzun sözleşme süreleri dolayısıyla kamu tarafının esnekliğinin kaybolması konularında ABD Sayıştayı tarafından eleştirilmektedir. (Goure, 2009)
PERFORMANS PARAMETRELERİ
5. Performans Parametreleri

PDL yaklaşımı ile yapılan sözleşmelerin temelinde, bu sözleşmeler ile tedarik edilmiş öngörülen hizmetlerin takibi, ölçülmesi ve değerlendirilmesini sağlamak amacıyla kolay anlaşılır ve ulaşılabilir performans parametrelerinin belirlenmesi bulunmaktadır. (US Department of Defense Product Support Manager Guidebook, 2011)

PDL yaklaşımı ile büyük çaplı ve karmaşık silah sistemlerinin ömrü devri boyunca sürdürülebilirliğini sağlayan ABD Savunma Bakanlığı tarafından belirlenen performans parametreleri;

- Ana Performans Parametreleri (Key Performance Parameters - KPP),
- Ana Sistem Özüntelikleri (Key System Attributes - KSA),

Söz konusu başlıklar ve bu başlıklar altında yer alan parametreleri ilişkin sınıflandırma ve açıklamalar Şekil 9'da gösterilmiştir.

Ana Sistem Öznitelikleri, ana performans parametreleri olarak belirlenmemiş, ancak etkin bir askeri yetenek için kritik ve gereklı sistem öznitelikleri olarak tanımlanmıştır. Bu özellikler kapsamında Güvenilirlik (Reliability; Material Readiness - Rm) ile Sahip Olma Maliyeti (Ownership Cost - OC) parametrelerine yer verilmiştir. (US Department of Defence, Deputy Undersecretary of Defence for Logistics and Material Readiness, 2007)

Söz konusu performans parametreleri, büyük çaplı ve karmaşık silah sistemleri için yaratılmış olmasına rağmen herhangi bir seviyede/platform, sistem veya alt sistem için belirlenmiş bir destek stratejisi kapsamında da kullanılabilmektedir. (US Department of Defense Product Support Manager Guidebook, 2011)

\[
\text{Hazır Bulunuşluk} = f(\text{Güvenilirlik, İdame Edilebilirlik})
\]

Şekil 10: Hazır Bulunuşluk, Güvenilirlik ve İdame Edilebilirlik Değişkenleri

Güvenilirlik değişkeni temel olarak Arıza Oranı (Failure Rate), onarılabilir sistem/malzemeler için kullanılan Arızalar Arası Ortalama Zaman (Mean Time Between Failure - MTBF), Bakım/Onarımlar Arası Ortalama Zaman (Mean Time Between Maintenance - MTBM) ve onarılamanayan sistem/malzemeler için kullanılan Arızaya Kadar Geçen Ortalama Zaman (Mean Time To Failure - MTTF) gibi parametreler kullanarak hesaplanmaktadır. (US Department of Defense Guide for Achieving Reliability Availability and Maintainability, 2005)

Performans parametrelerinin, ilgili sistemden hareket etme ihtiyaçları göre düzenlenmesi ve o sistemin tüm desteğini sağlayacak paydaşın sorumlulukları ile uygulmu bir şekilde belirlenmesi, PDL stratejisinin en önemli dinamiklerinden birisidir. (US Department of Defense Performance Based Logistics Guidebook, 2014)

SSM’de, PDL yaklaşıının uygulanmasına yönelik olarak yeni geliştirilen sistemlerin ömür devri yönetiminin planlanması ve enveranerdeki sistemlerin lojistik desteğinin sağlanmasına ilişkin çalışmalar sürürlütedir. Yürütülen projelerde faaliyet oranı, hazir bulunuşluk, idame edilebilirlik ve işlem etkinliği gibi parametreler kullanılmaktadır.
KAYNAKÇA

- BÜYÜKGÜRAL, Ferit. A 4-Step Process Evaluation Model to Assess the Success of Performance Based Logistics Contracts (Yayımlanmış Yüksek Lisans Tezi), Ohio, USA, , Air Force Institute of Technology, March 2009.

MSI (Military Science&Intelligence), Aylık Savunma Teknolojileri Dergisi, Şubat 2014/02, 103, 14-30.

T.C. Resmi Gazete, 07 Ekim 2012, 28434.

UK National Audit Office, Major Project Reports, 2008.

- YÜKSELEN, Korhan. An Assessment Tool of Performance Based Logistics Appropriateness (Yayımlanmış Yüksek Lisans Tezi), Ohio, USA, Air Force Institute of Technology, March 2012.